
UNCLASSI FlED

AD .295 _006"
kD_ .

ARED SERVICES TECICAL MU AG CT
ARLim=1t A STIM

LIM 12, VIIGNI

UNCLASSIFIED

NOTICE: When goverzent or other drswiZgs, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation vhatsoever; and the fact that the Govern-
ment may have forimlated, furnished, or in any wy
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rigbts
or permission to innufacture, use or sell any
patented invention that y in any way be related
thereto.

3 TM-WD-555/304/OO

Defense Atomic Support AgencyI Department of Defense Damage Assessment Center
Initial System

1 1604 JOVIAL Compiler
Vol. V: Description of System-Dependent Procedures

1 1 September 1962

TM-WD-555/304/oo

MEMORADUM
(TM Series)

This document was produced by SDC in performance of contract DA-49- 14(6-(-O070
at the Washington Division / 5121 Columbia Pike / Falls Church, Virginia.

SYSTEM
16o4 JOVIAL Compiler

Description of System-Dependent Procedures DEVELOPMENT

by CORPORATION

System Support Group 2500 COLORADO AVE.

Washington Division SANTA MONICA

1 September 1962 CALIFORNIA

The vews. conclusions, or recommendations expressed in this document do not necessarily
reflect the official views or policies of the Department of Defense.

Permisson to quote from this document or to reproduce it. wholly or in part, should be
obtained in advance from the System Development Corporation.

Reproduction in whole or in part is permitted for any purpose of the United States Government.

1 September 1962 1 TM-WD-555/30 /O0
(Page 2 Blank)

TABLE OF CONTENTS

Introduction 3

Chapter 1. Processing of Copool Identifiers. 5

1.0 Introduction 5..............5
1.1 RPOOL 5
1.2 POOL 5
1.3 CONVBE 9

Chapter 2. Processing of Direct Code i.i.1

2.0 Introduction..---. ii
2.1 Generator Pass 1 (al) P oessing . . . 11
2.2 DC Processing 12
2.3 CoVa 14
2.4 Error Messages 14

Chapter 3. Processing of Input/Output Statements..... 17

3.0 Introduction 17
3.1 ACCCK 17
3.2 CENSTZ 17
3.3 CALL 17
3.4 CBWfGT 18
3.5 CfIPT 19
3.6 COUTT 23
3.7 CINSUB 25
3.8 CIOTBL. 26
3.9 CTBLI 28
3.10 CNOSU 28
3.11 CRTJ 28
3.12 CST 29
3.13 CSTAT 29
3.14 CBTUS 29
3.15 IO 29

1 September 1962 3 TM-WD-555/3o4/oo
(Page 4 Blank)

ITRODUCTION

The areas of the 1604 JOVIAL compiler described in this document are isolated
because of their unique machine (configuration) and system dependence. These
areas undergo the most drastic changes when the compiler is transferred from
the DASA program production system to any other system.

The first chapter describes the routines that provide compool sensitivity.
These routines expect the conpool to be in a specific format. Furthermore,
some of the rules that govern these routines (e.g., all compool tables are con-
sidered rigid length) are germane only to the production of programs for the
DASA system.

The second chapter describes the routines that process direct code. These rou-
tines reflect the particular assembler (modifiea CODAP 0) and the preprocessor
that are used to produce programs for the DASA system.

The third chapter describes the routines that process input and output state-
ments. These routines provide input/output capability on the DASA machine con-
figuration and are therefore machine configuration-dependent.

These descriptions are designed to aid the programmer who is responsible for
maintaining the ccmpiler. They should be used only in conjunction with a list-
ing of the related JOVIAL statements and with the documents that describe the
phase (translator or generator) of the compiler in which these routines are
housed,

1 September 1962 5 TM-WD-555/304/Oo

CHAPTER 1

PROCESSING OF COMPOOL IDENTIFIERS

1.0 INTRODUCTION

Compool sensitivity for the 1604 JOVIAL compiler is made possible by the inclu-
sion of three procedures, RPOOL, POOL, and CONVB, within Pass 1 of the Generator.
EPOOL deals with the compool in its entirety. POOL operates within individual
sections of the compool. CONVB is used to convert characters from one code to
another.

1.1 RPOOL

The function of RPOOL is to determine if the object program requires a compool;
to read the required compool from tape into core; and to indicate the presence
or absence of a compool. RPOOL has no input or output parameters or local
variables.

Description. The procedure begins by checking item COMPOL to determine if a
compool is requested by the control card of the object program. If RPOOL finds
that a compool is not needed, RPOOL returns to the main program. If a compool
is needed, it is read from tape into core. Because the sections of the compool
are in one continuous tape record, and because the variable length tables (one
per section) must be read into fixed, maximum-length, non-contiguous core loca-
tions, RPOOL is written in direct code.

To read and place compool tables in specified areas of core, RPOOL monitors
the input for each desired compool section. Each section is identified by a
table name and total number of words. If the input does not contain one of
the sections listed within RPOOL, that entire compool section is read into one
word of core. If the section is needed, its location and total number of words
are placed in the I/O control word and the section is read into its proper core
location. This process continues until the end-of-record is sensed. If a
parity is sensed, the tape is backspaced and the entire process is repeated.
When no parity is sensed, the item COMPOL is set to indicate that the compool
is present.

1.2 POOL

This procedure searches a compool I section for a given identifier. If the
identifier is found, POOL sets specific items in the Generator equal to the
given compool information. If the identifier is not found, an exit from POOL

1 The compool used is described in SDC Field Note FN-WD-5545/513/OO, 12
February 1962.

1 September 1962 6 TM-WD-555/3O4/Oo

is made without any items being set. POOL is entered from IDEAL . Only ex-
press items are used as its input and output parameters.

Local Variables.

RAY - a simple item indicating an array item.

XX - a simple item for processing one byte.

AA - a simple item for indexing within compool item CISYM.

BB - a simple item for indexing the compool status table CSTA.

NS - a simple item for indexing the number of states of a status item.

DD - a simple item for indexing the DICT table.

RR - a simple item fcr indexing the mixed part of the compool item
table CITM.

SS - a simple item indexing the item table where the item's associated
table entry is given.

POOLA - a simple item containing the identifier in BCD.

POOLAX - a nine-character simple item overlaid with POOLA.

BCDSTC - used to convert statuses from BCD to STC.

Description. POOL is called by IDEAL to search a compool section for an iden-
tifier when IDEAL has failed to locate it in the dictionary. POOL first checks
NCHAR, and if NCHAR is found to be greater than five, POOL returns to IDEAL
(because compool identifiers are limited to no more than five characters).

The requested identifier in IDNT is moved to POOLA and converted from STC code
to BCD. POOLA is then used to determine the identifier's presence in or ab-
sence from the compool,

POOL considers two conditions when called by IDEAL. Item PARAM, which is set
by IDEAL, indicates these conditions and controls what will be done. If PARAM
is not equal to one or five, POOL returns to IDEAL. If PARAM equals one, in-
dicating that a designation label has been encountered in the program, POOL
searches the program section of the compool (CPRG) for the identifier. If it
is found, the dictionary item DEFN is set to two, to indicate that the item is

2 SDC Technical Memorandum, TM-555/020/0C, 1 July 196.

1 September 1962 7 T14-WD-555/304/OO

compool-defined. Also, CLAS is set to 12, which indicates a compool-defined
program. If the identifier is not found in the CPRG section of the compool,
POOL returns to IDEAL.

If PARAM equals five, which indicates that a variable is being processed,
NCHAR is checked first. If NCHAR is not equal to four or five, POOL returns
to IDEAL. If NCHAR equals four, it is necessary to search only the table sec-
tion of the compool (CTBL), because table names in the compool have four char-
acters. If the four-character identifier is not found, POOL exits to IDEAL.

If the identifier is found, the following dictionary items are set:

DEF - set to two, indicating compool-defined.

CLAS - set to seven, indicating a table.

PACK - set to one, indicating the table is packed.

Other items are set according to the table definition information in compool
item CTF!P. If CTTYP does not equal one, two, or three, Error Message 43
(identifier usage is not compatible with its class) is output and POOL returns
to IDEAL.

If CTrYP equals one (parallel table):

TFRM is set to one, indicating a parallel table.

SIZE is set to the number of words per entry (CTMAX/CTWDS, which is
the number of words in the table divided by the number of entries).

CHLI is set to the number of entries (CTWDS).

POOL then returns to IDEAL.

*If CTTYP equals two or three (serial or mixed table):

TFRM is set to two to indicate a serial table.

PDAT is set to CTVAR, which indicates rigid or variable table length
(TRUE equals variable).

SIZE is set to the number of words per entry (CTWDS).

CE]1 is set to the number of entries (CTMAX/CTWDS).

POOL then returns to IDEAL.

1 September 1962 8 TM-WD-555/304/Oo

If POOL finds NCEAR equal to five, it searches table CITM for the desired item
name. It may find that the item name is a subordinate of a table, an array,
or even another item. If the desired identifier is not encountered by the
search of table CITM, POOL returns to IDEAL. Once the desired identifier is
found, two referencing counters (RR and SS) are set. RR is set equal to the
entry number in the second half of the CITM table, where the variable informa-
tion describing the compool item is located. SS is set equal to RR. If the
desired item is subordinate to another item, SS is modified to contain the en-
try number in the second half of the C17 table, where the cross-reference en-
try number to the CTBL table is located. If the item requested by IDEAL is
subordinate to an array, an indicator is set. By use of reference counter RR,
the following dictionary items are always set-.

CLAS set to five (table item).

FPNM set to CIWRD (word in the entry where located).

DEFN set to two (comr,-ol-defined).

PACK set to one (indica'es packed table).

FBIT set to CIBEG (beg4innlng bit position of word).

If CICOD equals one (fixed point)i

'I'M set to one (fixed point).

BRGT set to CIFRA (number of bits right or fractional bits).

SIZE set to CIBTS (number of bits).

PDAT set to C;GND (signed or unsigned).

If CICOD equals two (Boolean).

TYPV set to two.

SIZE set to one (number of bits).

If CICOD equals six (integer) or 15 (X-coded)z

TYPV set to six.

SIZE set to CIBTS (number of bits).

1 September 1962 9 TM-WD-555/3o4/oo

If CICOD equals four (floating):

TYPV set to four.

PDAT set to SIGND (sign).

SIZE set to 48 (number of bits).

If CICOD equals five (Hollerith):

TYPV set to five.

SIZE set to CIBTS (number of bytes).

If CICOD equals nine (transmission):

TYPV set to nine.

SIZE set to CIOTS (number of bytes).

v" If CICOD equals seven (status):

TYPV set to seven.

V SIZE set to CIBTS.

BRGT set to NSTAT (index to VALU).

Status item statuses must be moved from the compool to the compiler table VALU.
This is done in the area labeled Al to Hl.

For the above items which will have a CLAS set to five, CH2 is set to the dic-
tionary channel where the table description containing this item can be found.
CHL will contain the number of words per entry.

If the item belongs to a table, the table name is moved into IDNT, NCHAR
set to four, and the table section of the compool is then searched. Thus,
the table is entered in the dictionary if it has not been previously entered.
If the item belongs to an array, the dimensions of the array are stored in the
DISH table and POOL returns to IDEAL. It should be noted, however, that the
use of arrays by POOL is not fully implemented.

1.3 CONVE

The function of this procedure is to locate an identifier for conversion from
STC to BCD or BCD to STC. CONVB has no local variables. It is entered from
POOL.

1 September 1962 10 TM-WD-555/304/oo

Description. The identifier to be converted must be located in the item IDNT,
with TEXT set to indicate the first byte and NCHAR set to the number of bytes
to be converted. CONVB sets KONVR8, KONVR9, and KNVlO for the CLOSE routine
KONVRT to convert the bytes from the input type given in DUM3 to the output
type requested in DUM4 in the item IDNT itself. CONVE then calls KONVRT to do
the actual conversion. KONVRT is a small direct code routine which converts
bytes of information from STC to BCD and BCD to STC.

1 September 1962 11 TM-WD-555/304/oo

CHAPTER 2

PROCESSING OF DIRECT CODE

2.0 INTRODUCTION

The processing of direct code for the 1604 is performed by the JOVIAL compiler
using Procedure Direct Code (DC), which is part of Translator Pass 1 (TI). DC
processes direct code cards after Generator Passes 1 and 2 have completed their
operations so that information found in the direct code can be added to the
table DICT and its associated tables before the translation begins. Procedure
DC allows the object program to cross-reference direct code labels with the
JOVIAL identifiers or compool identifiers. If the direct code is contained
within a procedure, local cross-referencing is first attempted to establish
the direct code with labels in the procedure. If this cannot be done, express
cross-referencing is attempted to relate the direct code with labels in the
main program. Cross-referencing from one procedure to another must never be
done. If the direct code is not contained within a procedure, cross-referencing
can be only express. All mnemonic or octal codes may be used, as may a set of
pseudo-operation codes that include preprocessor codes.

2.1 GEZRATOR PASS 1 (o1) PROCESSING

After encountering the DIRECT bracket, Generator Pass 1 (Gl) scans each direct
code card, searching for an ASSIGN operator or the terminating bracket, JOVIAL.
All direct code cards are counted as encountered, one through n. To distinguish
between the sam local and express identifiers when direct code is encountered
in a procedure, G1 collects pertinent information in the PDRT table which is
used by the DC procedure in TI. The four items in PDRT which permit this are:

PDRC - the beginning dictionary channel of the procedure of which this
direct code is a part.

PDL - the terminating dictionary channel of the procedure.

PDRK - the number of direct code cards which belong to this procedure.

PDRF - the starting sequential card count when direct code in this
procedure is encountered.

To permit referencing JOVIAL-defined identifiers, i.e.., those defined outside
the scope of direct code, the DISH table is passed on to T1 via tape. The
DISH table represents all of the identifiers (the numeric HAS~Md values of the
identifiers) and contains for each HASHed identifier an index to the dictionary.
The dictionary items FCM and NCBB are used to index the IRIS string to obtain
the actual identifier. G1 encodes all encountered direct code cards in DCD
and writes them onto the tape declared DIRCT.

1 September 1962 12 TM-WD-555/304/O0

2.2 DC PROCESSING

DC produces a set of variables in the table SKDUE for each direct code card
and then writes SMUE onto a tape, SKDRCT, for input to T2. DC is entered from
the main program of Tl. It has no input or output parameters.

Local Variables.

DD - DICT entry

YT - Byte of the card image

ZZ - Number of bytes

JOC - Converted decimal number

FLOAT - Floating point mterm

INN - Converted octal number

SL - Byte of the starting letter in mterm or LOC field

NL - Number of letters

SN - Sign of the number in mterm

BN - Byte of the first digit in mterm

NOR - Number of numbers in the mterm

EN - Type of character at the end of the number

F? - First byte of a floating point number

FN - Number of digits in the floating point number

SD - Sign of the digits after the number

FD - First byte of the digit in the power

AD - Number of digits in the power

ADA - Power of 10 or two

DO - Indicates an eight or nine in a set of numbers

SW2 - Zero - LOC field; one - mterm

1 September 1962 13 T-WD-555/304/oo

XH - Transmission work area

XX - Byte work area

PRO - DICT entry when a procedure begins

SW - Presence of a number in mterm

ENI - NOP

NCBN - First byte in the B power of a DEC card

NC - Number of bytes

PC - Reference to self, indicated by a (*)

HOPN - A subscripted item containing the CODAP symbolic codes

Pseudomnemonic Codes. The following list of codes are allowed by the direct
code procedure:

POSA SEN REM IDUT
POSQ SEL EqJ FINIS
RESA ACT ORG END
RESQ Wj DEC BSS
LDQ% ARJ OCT BES
ENIL SRZ DCD BTS
INIL RTJ FILX LIB
MASK NOP TEL

Description. Direct code cards are read and processed one at a time in four
distinct segments: the location field (columns 1-8 of the card); the opera-
tion code field (columns 10-13); the index, or bterm, field (columns 17-18);
and the mterm field (columns 20-39).

The main body of this procedure is oriented toward input, output., and CODAP-
compatible legality checking. Calls are made to the following procedures and
CLOSE routines which perform the actual formulation of the complete location
and mterm fields:

CLOSE NUiMER is called to form the labels for routine 20 to process.

CLOSE OTOB is called to convert an octal STC number to binary.

CLOSE DTOB is called to convert a decimal STC number to binary.

1 September 1962 14 TM-WD-555/304/Oo

Procedure TRANS is called to convert the first 40 card columns from
BCD to STC.

Procedure CONY is called to convert character coding from one code to
another (see below).

The CODAP pseudocodes RST and WST are not implemented. CODAP pseudo-operation
codes DEC, OCT, BCD, FLX and TEL are implemented but are restricted to one word
of information per direct code card. When identifiers (labels, tags) are pres-
ent gither in the location or mterm fields, CLOSE R0 calls procedures HASH' and
SRCHI to determine if the identifier had been previously used.

The area in CLOSE R from tag R01 to R5 insures proper compatible usage and
referencing of identifiers within the scope of direct code. Further, this
area provides that cross-referencing within a procedure will be first local and
then express, but never from one pixcedure to another. Referencing of arrays,
switches, files, procedures, closes, and strings in direct code is illegal.
Compool-defined identifiers previously referenced in a JOVIAL statement or
those which are unique (i.e., not defined by a label used elsewhere in direct
code) will be permitted in this region. If an identifier has not been previ-
ously defined, or if it exists in a main program or in another procedure, etc.,
an entry is made in the DICT table for further referencing.

2.3 CONY

The function of procedure CONV is to convert a given number of bytes from any
one to another of six types of character coding (BIN, BCD, STC, FLX, TEL, or
SPFM). CONV is entered from procedure DC.

Description. The information to be converted is located in the CARD image.
The formal parameter DUMI contains the first column, and DI contains the num-
ber of columns to be converted. CONV converts the bytes from the input type
given in DUM3 to the output type requested in DUM4 in the CARD image itself.
A table look-up substitutes the requested type for the input type in the CARD
image.

2.4 ERROR MESSAGES

Number Explanation

201 Mterm contains more than five digits.

1 SDC Technical Memorandum, TM-555/302/00, 1 June 1962

2 SDC Technical Memorandum, TM-555/020/00o, 10 July 1962

1 September 1962 15 TM-WD-555/304/OO
(Page 16 Blank)

Number Explanation

203 More than eight characters between two minus zero symbols (8) on a
FLX or TEL card.

204 DEC is illegal: too many digits, non-numeric characters.

205 BSS is illegal: non-numeric characters in mterm.

-" 206 OCT contains more than 16 digits and/or an eight or nine in mterm.

207 The LOCN or mterm has more than six characters (symbolic).

208 Duplicate tags.

I
I

I

V

1 September 1962 17 TM-WD-555/304/00

CHAPTER 3

PROCESSING OF INPUT/OUTPUT STATEMENTS

3.0 INTRODUCTION

Several procedures and closed statements in T2 are employed to generate instruc-
tions which will accomplish input/output operations. The particular input and
output operations are stated in the JOVIAL language. These statements are en-
coded by G1 and T1 and passed to T2 in the Intermediate Language table and the
dictionary. The procedures ml closed statements in T2 use this information to
generate either the specific external function codes or a calling sequence to
a library routine which will accomplish the input/output operations. The re-
quired library routines are incorporated with the compiled program during as-
sembly.

3.1 ACCCK

This closed routine is used to check for a subscript or bead in the accumulator
when input and output statements are processed. If ACCCK finds either in the
accumulator, it sets up instructions to store the subscript or bead in tempor-
ary storage. The program then exfts from ACCCK.

The temporary storage assignments for a subscript or bead are:

If the operand has only one subscript, the subscript is stored in

TD(PS+l-

If the first of the operand's two subscripts is found in the accumula-
tor, it is stored in TIEPS+2.

If either the second subscript or the first or second bead is found
in the accumulator, it is stored in TEMPS+l.

3.2 CENTSZ

This closed routine is used in processing input and output statements whose
dataname is a table. CEITSZ checks for a parallel table with more than one
word per entry. If one is found, an error message is written on the debug
tape.

3.3 CALL

This procedure is used to prepare the first word of the calling sequence for
output library routines.

1 September 1962 18 TM-WD-555/304/0o

Description. If the output hardware is one of those listed below, CALL sets
item CELLi equal to zero as an error flag. If the output hardware is not one
of those listed below, CELL1 is set equal to one and an error message is
printed on the debug tape.

CALL prepares instructions to call the appropriate library routine, using
BLIB, which actually generates the RTJ. CALL also sets an indicator for the
next instruction to be forced into an upper location.

1. Magnetic Tape. If a binary file is to be written on magnetic
tape, a Jump to library routine CRITB' is generated. If the file
is decimal, CRITD' is called. CALL prepares the next instruction,
which indicates the channel and cabinet number in the operation

field, and the tape number in the bterm field.

2. Typewriter. A jump to CWTYP' is generated. No lower instruction
is prepared.

3. Paper Tape. A Jump to CPTPN' is generated. If the file is bi-
nary, the mterm of the next instruction is set equal to zero. If
it is decimal, the mterm is set equal to one.

4. Card Punch. A Jump to CPNCH' is generated. The mterm of the next
instruction is set to zero if the file is decimal, or to one if
the file is binary.

5. Printer. A Jump to CPRNT' is generated. No lower instruction is

prepared.

3.4 CBRGT

Procedure CBHGT is used in processing input statements to set three items for
magnetic tape assignments:

COPN is set to an octal value equal to the channel number times eight
plus the 1607 unit number.

CBTERM is set to the tape unit number.

CNTRL is set to a binary value equal to the decimal value of the hard-
ware identifier ("T" number).

1 SDC Technical Memorandum, TM-WD-555/303/00 (to be published October 1962)

1 September 1962 19 TM-WD-555/304/O0

The item settings for each possible magnetic tape are as follows:

CBRGT Setting
Hardware BRGT COPN CNTRL

Identifier (Octal) (Octal) CBTERM (Decimal)

TOl 11 12 1 1
T02 12 12 2 2
T03 13 12 3 3
T04 14 12 4 4
T05 31 32 1 5
T06 32 32 2 6
TO7 33 32 3 7
TO8 34 32 4 8
T09 51 52 1 9
TIO 52 52 2 10
TIl 53 52 3 11
T12 54 52 4 12

Description. CBRGT checks the value of BRGT subscripted by CSUB to determine
the setting of items COPN, CBTER4, and CNTRL. When they are set, the program
exits from CBRGT.

An express variable, CSUB, is used by CBRGT as an input parameter. CSUB is
set to PILF or DILF (i), depending on whether the source of the required in-
formation is an IL operator or operand.

3.5 CIEMT

This procedure is used in processing all input statements. The calling se-
quences for the appropriate library routine are generated, as well as any in-
structions required for manipulation of the input data.

Description. Before processing any input statements, CINPT performs the fol-

lowing four steps:

1. Unpacks the IL table into the DIL, SBIL, BILl, and BIL2 tables;

2. Unpacks the dictionary items for the first operand;

3. Checks the contents of the accumulator for a subscript or bead,
and

4. Sets an index register equal to DILF(l) to save time and space.

I.
I

1 September 1962 20 TM-WD-555/304/0o

Calling sequences vary as follows with the input hardware to be used:

1. Magnetic Tape. Initial parameters are established and instructions
are generated to set a flag to zero to indicate that this file is
to be used for input.

a. If the dataname is a table modified by NENT, instructions are
generated for a jump to library routine CREDB and to set an
indicator for the next instruction to be forced into an upper
location.

b. If the dataname is a table not modified by NENT, instructions
are generated to store the proper starting and terminating
(terminal address plus one) addresses of the dataname in the
calling sequence.

1) If there was an error in procedure CIOTBL, the error indi-
cator item, ERR, is set equal to zero and an exit is made
from the routine.

2) If there was no error in CIOTBL, a jump to library routine
CREDB' is generated and an indicator is set for the next
instruction to be forced into an upper location.

a) If the file is binary, a jump to library routine
CRED' is generated.

b) If the file is decimal, a jump to library routine
CREDD' is generated.

c. If the dataname is subscripted by a bead, an error message is
written on the debug tape and an exit made from the roatine.

d. If the dataname is a table item with a single subscript,
CINPT uses procedure CTBLI to prepare instructions for storing
the proper starting and terminal-plus-one addresses in the
calling sequence.

If the input hardware is not magnetic tape, item BBUN is set to
hardware type and then used by switch IOUNIT to determine the cal-
ling sequence for the proper library routine.

2. Clock. The contents of the clock are placed in the accumulator.

a. If the dataname is a simple item, the accumulator is stored
in the proper item and an exit is made from the routine.

T
1 September 1962 21 TM-WD-555/30/00

b. If the dataname is a subscripted item, CINPT uses procedure
DEPOS1 to deposit the accumulator in the proper location, and
an exit is made from the routine.

c. If the dataname is neither a simple nor subscripted item, an
error message is written on the debug tape and an exit is
made from the routine.

3. Typewriter. A Jump to library routine CRTYP' is generated and an
indicator is set for the next instruction to be forced into an
upper location.

4. Paper Tape. A Jump to library routine CPTRD' is generated and an
indicator is set for the next instruction to be forced into an
upper location. The mterm of the next instruction is set to one
or zero, depending on whether the file is Hollerith or binary.

5. Card Reader. A Jump to library routine CREAD' is called and an
indicator is set for the next instruction to be forced into an
upper location. The mterm of the next instruction is set to one
or zero, depending on whether the file is Hollerith or binary.

a. If the input hardware is the secondary read station, the mterm
of the next instruction is increased by two.

b. If the input hardware is not the secondary read station, the

raterm of the next instruction is increased by one.

If the input hardware is other than magnetic tape, clock, typewriter,
paper tape or card reader, an error message is written on the debug
tape and an exit made from the routine.

Up to this point, CIMPT has generated the first two half-words of the calling
sequence and also instructions that will modify the calling sequence during
execute time. The following description relates to that part of CfIPT which
generates the last two half-words of the calling sequence:

1. Table.

a. If the table is modified by NUT, the address of tablename
minus one is set up in the mterm of the next instruction as
the starting address of the input data. The address of the
tablename is set up in the lower mterm as the terminating ad-
dress.

1 SDC Technical Memorandum, TM-WD-555/303/OO (to be published October 1962)

Ii I
1 September 1962 22 TM-WD-555/304/Oo

b. If the table is not modified by NENT, two instructions of
zeros are prepared so that the starting address may be stored
in the upper mterm of this word and the terminating address
may be stored in the lower mterm.

An exit is made from CINPT.

2. Beaded Item. If the item is modified by BIT or BYTE, an error
message is written on the debug tape, and an exit is made from
CINPT.

3. Simple Item. If the dataname is not subscripted, it is a simple
item. Procedure CNOSU is used to set the starting and terminating
addresses in the next word. An exit is made from CINPT.

4. Subscripted Item. Procedure CTBLI is called to prepare instruc-
tions to generate and store the starting and terminating addresses
of the input data in the calling sequence.

a. If item OPS is equal to five, two instructions of zeros are
prepared for the calling sequence to contain the starting and
terminating addresses of the data transfer.

b. If item OPS is zero, a call to library routine CBUFR' (working
storage space) is generated. I

c. If the item is not Hollerith or STC, or is less than or equal
to eight literal characters, the mterm of the next two instruc-
tions is set to CBUFR' and CBUFR'+l as starting and termina-
ting addresses. Procedure BXODS 1 is used to set up the DIL
and DICT tables so that the second operand will be the accumu-
lator in an ASSIGN statement. The contents of CBUFR' are
placed in the accumulator, and procedure DEPOS is used to
generate instructions to properly position and store the in-
put data.

5. Subscripted Literal Item Greater Than Eight Characters. To deter-
mine the starting address of the input data, the number of char-
acters is divided by eight. If it is equally divisible, the
number is reduced by one. The starting address for input data is
set at CEUFR' minus the number calculated, and the terminating
address is set equal to CBUF1'+1. Item HILL is set equal to two,
indicating to procedure BORB that the information to be stored

1 SDC Technical Memorandum, TM-WD-555/303/O0 (to be published October 1962)

TI
1 September 1962 23 TI4-WD-555/304/o0

in the dataname is in the CBUFR' table. BOIM is used to deposit
the input data in the location specified by the dataname. An
exit is then made from the routine.

3.6 COUTT

Procedure COUTT is primarily concerned with the second word of the calling se-
quence; that is, with the starting and terminating addresses of the data to be
output. COUTT uses procedure CALL to generate the call for the appropriate
library routine.

Description. Before processing any OUTPUT statements, COUTT performs the fol-
lowing four steps:

1. Unpacks the IL table into the DIL, SBIL, BILl, and BIL2 tables;

2. Unpacks the dictionary items for the first operand;

3. Checks the contents of the accumulator for a subscript or bead,
and

r 4. Sets an index register equal to DILF(1) to save time and space.

If the output hardware is:

1. Magnetic Tape. Initial parameters are established and instruc-
tions are generated to set a flag to one to indicate that this
file is to be used for output.

2. Clock (CLOCKO). If the dataname is a simple item or table item,
procedure ELDOD1 is called to generate instructions to load and
right-Justify the item. Instructions are generated to store the
accumulator in the clock and an exit is made from COUIT. If the
dataname is not a simple item or a table item, an exit is made
from COUIT.

Dataname instructions are prepared as follows:

1. Table.

a. If the table is modified by NEWT, procedure CALL is used to
generate the call to the appropriate output library routine.
If the error indicator CELL1 is set when returning from CALL,
an exit is made from COT. If it is not set, the starting

1 SDC Technical Memorandum, TM-WD-555/303/O0 (to be published October 1962)

1 September 1962 24 TM-WD-555/304/00

address is set equal to the tablename minus one, the term'-
nating address is set equal to the tablename, and both are
placed in the calling sequence.

b. If the table is not modified by NENT, procedure CIOTBL is used
to generate instructions to store the starting and terminating
addresses in the calling sequence. If the error indicator ERR
is set when returning from CIOTBL, ERR is set equal to zero
and an exit is made from COUTT. If ERR is not set, procedure
CALL is used to generate the call to the appropriate output
library routine. If the error indicator CELLI is set when re-
turning from CALL, an exit is made from COUTT. If CELLI is
not set, one word of zeros is generated to receive the start-
ing and terminating addresses of the table.

An exit is made from COUTT.

2. Beaded Item. If the item is modified by a BIT or BYTE, an error
message is written on the debug tape, and an exit is made from
COUTT.

3. Simple Item. If the dataname is not subscripted, it is a simple
item. Procedure CALL is used to generate the call to the appro-
priate library routine. If CELLI is set when returning from
CALL, an exit is made from COUTT. If CELLI is not set, procedure
CNOSU is used to set the starting and terminating addresses in
the next word. An exit is then made from COUTT.

4. Subscripted Item. CTBLI is called to prepare instructions to
generate and store the starting and terminating addresses of the
output data in the calling sequence.

a. If item OPS is equal to five when returning from CTBLi, which
indicates that the instructions are generated and stored,
CALL is used to generate the call to the appropriate outrut
library routine. If the error indicator CELLI is set when
returning from CALL, an exit is made from COUTT. If CELL1 is
not set, the next word of the calling sequence is set equal
to zero. The upper mterm of the next word will receive the
starting address and the lower mterm the terminating of the
output data. An exit is made from COMTT.

b. If item OPS is not set equal to five when a return is made
from CTBLI, a call. to library routine CBTFRT (working storage)
is generated. If the output data is not a Hollerith or STC
item, OP is set equal to one (first operand) and procedure
ELDOD is used to set up instructions to load the subscripted I!

1 September 1962 25 TK-WD-555/304/O0

item into the accumulator. The procedure goes to area COUT5A
to met up instructions to store the accumulator contents in
CBUFE'•

c. If the output data is less than or equal to eight bytes, item
OP is set equal to one (first operand) and item ODPOS is set
equal to zero. Procedure LITP is used to prepare instruc-
tions to load and right-justify the literal item in the accum-
ulator. The procedure goes to area COUT5A to set up instruc-
tions to store the accumulator contents in CBUFR'.

. Subscripted Literal Item Greater Than Biht Characters. To deter-
sive the starting address, the number of characters is divided by
eiht and the quotient is stored in C8127. If it to equally divi-
sible, the CSIZE is reduced by one. The indicator NI4a is set
equal to one as a flag to BM that an output statement is being
processed. BOM is used to prepare instructions to remove output
data from the dataname to CIUIh'. CALL is used to prepare the
first word of the calling sequence. If item CELl is set when
returning from CALL, an exit is made from COUIT. If CELL1 is not
set°, the upper stern of the next instruction (starting address)
to set equal to CBF' minus CSIZZO and the lover sterm is set
equal to CBUFR'+1 (terminating address), An exit is made from

6. Irror. If the dataname is illegal, an error message is written
onto the debug tape and an exit is made from COUTT.

3.7 CIISi

This pr cedure is used by procedures CIOBL and CTBLI to prepare instructions
for loading the accumulator with the value of a specified subscript (variable
plus or amus constant).

Descri~in

1. Item OPS is equal to one or three, depending on which subscript
(the first or second) is to be loaded into the accumulator.

2. SIPW latter Subscript. Procedure IIDL1 is used to prepare
1 aI natruetio n to put the present value of the single letter
sbscript into the accumulator.

1 OC %&icl NMemorandum TM-D-555/3C3/O0 (to be published October 1962)

I

1 September 1962 26 TM-WD-555/304/00

3. NENT of a Table. Instructions are generated to load the accumula-
tor with the contents of the table name minus one.

4. Neither Single Letter nor NENT of a Table. Instructions are gen-
erated to load the accumulator with the temporary register or the
variable. If there is a constant associated with this variable,
it is added to or subtracted from the contents of the accumulator.
An exit is made from CINSUB.

3.8 CIOTBL

Procedures CINPT and COUTT use CIOTBL when the dataname portion of the input or
output statement is a table. CIOTBL is primarily concerned with generating in-
structions to store the starting and terminating address of the transfer in the
calling sequence.

Description. CIOTBL sets an index equal to DILF(1).

.1. Double-Subscripted. Table. The closed routine CENTSZ is used to
check for a parallel table with more than one word per entry. If
the table is parallel and has more than one word per entry, an
exit is made from CIOTBL.

Item OPS is set equal to three and procedure CINSUB is used to
generate instructions to load the value of the second subscript
into the accumulator. Instructions are generated to increase
the second subscript by one and store it in TEMPS+l.

Item OPS is set equal to one and procedure CINSUB generates in-
structions to load the accumulator with the value of the first
subscript. An instruction is prepared to store the first sub-
script into TDPS+2.

If the table has only one word per entry, instructions are gener-
ated to load the accumulator with the value of the first subscript
(TENS+2). If the table (serial) has more than one word per en-
try, instructions are generated to multiply the number of words
per entry by the value of the first subscript. Instructions are
generated to increase the contents of the accumulator (words per
entry times the number of entries) by the starting address of the
table and to store the result in the starting address portion of
the appropriate input or output calling sequence.

If the table has only one word per entry, instructions are gener-
ated to load the accumulator with the value of the second sub-
script plus one (TEMS+I). If the table (serial) has more than
one word per entry, instructions are generated to multiply the

-I

1 September 1962 2T TK-WD-555/304/O0

number of words per entry by the value of the second subscript
plus one (TUPS+l). Instructions are generated to increase the
ontents of the accumulator by the starting address of the table
end to store the result in the terminating address portion of the
appropriate input or output calling sequence

An exit is made from CIOTBL.

2. Sixe-Subscripted Table. C3ITSZ is used to check for a parallel
w tte than one word per entry. If the table is parallel

with more than one word per entry, an exit is made from CIOTBL.

Item OPS is set equal to one and procedure CINSJ generates in-
structions to load the accumulator with the value of the sub-
script. Instructions are generated to multiply the subscript
value by the number of words per entry, to increase the result by
the starting address of the table, and then to store the final
result in the starting address portion of the appropriate input
or output calling sequence.

Instructions are generated to increase the starting Address (now
in the accumulator) by the number of words to be transferred and
to store this value in the terminating address portion of the
appropriate input or output calling sequence.

An exit is made from CIOTIL.

3. Table Without Subscript. Instructions are generated to load the
Otarting address into the accumulator and then to store this value
into starting address portion of the appropriate calling sequence.

If this table is a variable length serial or parallel (one word
per entry) table, instructions are generated to multiply the num-
ber of words per entry by tablenme minus one (ANT), to increase
this result by the starting address, and to store the final result
in the terminating address portion of the appropriate calling se-
quence.

If this table is a rigid length table or a variable length paral-
lel table with more than one word per entry, the total number of
words to be transferred (nmber of entries multiplied by the num-
ber of vords per entry) are calculated. Instructions are gener-
ated to add this total to the accumulator and to store the result
in the terminating portion of the appropriate library routine.

An exit is made from CIOTBL.

£

I

7?

1 September 1962 28 TM-WD-555/304/00

4. Error. If the tablename is not subscripted by zero, one, or two
subscripts, an error message is written onto the debug tape and
error indicator item ERE is set. An exit is made from CIOTBL.

3.9 CTBLI

This procedure is used by CINPT and COUTT to prepare instructions to generate
the starting and terminating addresses of Hollerith or STC table items and to
store them in the correct input or output calling sequence.

Description. CTBLI sets an index to value of DILF(1) to save space and time.
If the item is not Hollerith or STC, or if it is Hollerith or STC but does not
begin in byte zero and occupy an integ1W number oq worda, OPS is aet to zero
and ab exit is ma eef. CTBLI.

CINSUB is called to generate instructions to load the value of the subscript
into the accumulator. If the item is located in a serial table, instructions
are generated to multiply the accumulator by the number of words per entry.
Instructions are generated to increase the accumulator by the starting address
of the item's table and to store the result in the starting address portion of
the calling sequence. Then the instructions are generated to increase the
starting address (accumulator) by the number of words the item occupies and to
store this result in the terminating address portion of the calling sequence.
OPS is set to five and an exit is made from CTBLI.

3.10 CNOSU

This procedure prepares the starting and terminating addresses for the appro-
priate input or output library routine calling sequence when the dataname is a
simple item or a constant.

Description. If the dataname is not a constant or a simple item, an error is
written on the debug tape and an exit is made from CNOSU. The starting address
is set with the address of the dataname. The terminating address is set to the
address of the dataname plus one, except for literals. The terminating address
for literals is set to the starting address plus the number of words which the
literal occupies.

3.11 CRTJ

This procedure prepares a retyrn Jump to a library routine. OPN is set to RTJ,
MTC is set to nine, and SKDOO is called. All other parameters for SKDOO are .1
set before CRTJ is called.

T

1 SDC Technical Memorandum, TM-WD-555/302/OO, 1 June 1962 t

I

!H

1 September 1962 29 TM-WD-555/304/00

3.12 CSET

This procedure prepares the second half of the first word of many of the cal-
ling sequences for the magnetic tape library routine. Only input channels are
considered by this procedure. The operation code is set to the channel number
times eight plus the 1607 unit number. The bterm is set to the tape unit num-
ber.

3.13 CSTAT

This procedure is used in conjunction with CSTJS to prepare instructions for
library routine calling sequences (for li-a.rot1.aMs that check the status of
magnetic tapes). CSTAT prepares instructions for placing tape identification
information in the accumulator. This information is considered to be input
data. If the file that is interrogated is an output file, the tape identifica-
tion information is changed accordingly. This information is then shifted to
the proper portion of the word to await placement in the calling sequence.

3.14 CSTUS

This procedure is used in conjunction with CSTAT to set up the instructions
for calling sequences to library routines that check the status of magnetic
tapes. CSTUS sets up an instruction to store the accumlator (which now con-
tains the first word of the calling sequence) into the next location. CSTUS
also reserves the word that is to receive the first word of the calling se-
quence.

3.15 I'O

This procedure handles the POS modifier, OPEN INPUT, OPEN OUTPUT, SHUT INPUT,
SHUT OUTPUT and all status checks that involve peripheral equipment.

Description. The dictionary channel of the first operand is loaded into a sub-
script to increase the efficiency of the compiler.

1. POS Modifier. If the second operand is zero, CBRGT is called and
then a Jump to CEWUD' is generated. CSET, which will set the
lower half of the first word of the calling sequence, is called.
If the file required is not the first file on the tape, the cal-
ling sequence for CSKPF' is generated.

If the second operand is not zero, the calling sequence is gener-
ated for either CBACK' or CSKIP', depending on whether I'O was
entered from JSUB (subtract operator) or from JADD (add operator).

An exit is made from I'O.

i

1 September 1962 30 TM-WD-555/304/O0

2. OPEN INPUT.

a. Tape. CBRGT is called and then instructions are generated to
set hardware identifier in an indicator. The calling sequence
for CRWND' is generated. If this is not the first file on
the tape, the appropriate calling sequence for CSKPF' is gen-
erated. If a dataname is included in the statement, CINPT is
called.

An exit is made from V0.

b. Clock. Instructions are generated to clear and start the
clock. If a dataname is included in the statement, CINPT is
called.

An exit is made from I'0.

3. OPEN OUTPUT.

a. Tape. If this is the first time this file has been "opened"
or if it is the first file on the tape, instructions are gen-
crated to set the hardware identifier in the proper indicator.
The calling sequence for CRWND' is generated. If a dataname
is included in the statement, COUTT is called.

An exit is made from I'O.

b. Printer. Instructions are generated for page ejection. If
dataname is included in the statement, COUTT is called.

An exit is made from I10.

c. Clock. If a dataname is not included in the statement, in-
structions are generated to clear and activate the clock.
If dataname is included, COUTT is called and, upon return
from COUTT, an instruction is generated to activate the clock.

An exit is made from I'O.

4. SHUT INPUT. If a dataname is included in the statement, CIPr is
called. If the hardware device is the clock, an instruction to
stop the clock is generated.

An exit is made from V'0.

.1

1 September 1962 31 TM-WD-555/3o4/O0

5. SHUT OUTPUT. If a datename is included in the statement, COUTT
is caled'.

a. Tae. The calling sequence for CWEOF' is generated and then
an exit is made from I0.

b. Clock. An instruction is generated to stop the clock and
then an exit is made from I10.

6. Status Checks.

a. Tape. When the check is for ready, parity or buffer length
error, instructions are generated and CSTAT and CSTUS are
called to obtain the calling sequences for CREDY', CPRTY',
CWURR' and CBLTH'. The instructions that are generated com-
pute the calling sequence to the appropriate library routine.
When the check is for end-of-file or end-of-tape, no computa-
tion is required. CRTJ and CSZT are used to generate the call
for CENDF' and CENDT', respectively,

Depending on whether EQ or NQ was specified in the statement,
the logic of the next two words of the calling sequence will
be reversed.

An exit is made from I'O.

b. Card Reader. Instructions are generated to exit "on ready"
or "not ready," depending on whether "ready" or "end-of-cards"
is specified in the statement. The true transfer is generated
after considering the use of EQ or NQ in the statement.

An exit is made from I'O.

c. Printer and Punch. Instructions are generated to exit "on
ready." Also, the true transfer is generated after consider-
ing the use of EQ or NQ in the statement.

An exit is nudle from 110.

d. Paper Tap,, and Funch. If NQ is specified in the state-
ment, an exit is made from I'O. The true transfer is gener-
ated.

An exit is rale from I'O.

I

1 September 1962 32 TM-WD-555/304/oo
(Last Page)

e. Typewriter. The appropriate instructions are generated to
check for carriage return, lower case, or ready, depending
on the statement. NQ is ignored when specified with ready,
but for all other cases, the true transfer is generated.

An exit is made from I'O.

I

I

I

'UNCLASSIFIED

System Development Corporation,
Santa Monica, California
DEFUSE ATOM4IC SUPPORT AGENCY
DEPARM4ENT OF DEFUNSE - DAMAGE
ASSESSMENT CENTER - INITIAL SYSTEM-
104 o JVIAL COMPILE - VOL. 5:
DESCRIPTION OF SYSTEM-MEU PROCEDUJRES.
Scientific rept.,, TM-WD-555/3OI4iOO, by
System Support Group, Washington Division.
1 September 1962, 32p.
('Contrac.t DA-4941146-XZ-07O)

DESCRIPTORS: Digital Computers.
Machine Translation.

Identifiers: JOVIA. UNCLASSIFIED

'UNCLASSIFIED

Describes routines that provide compocl
sensitivity, routines that prcoess
direct code, and routines that prcn~es
input and output stattements -,f the
CDC-1604 computer JOVIAL cospiler.

